Relative stopping power measurements to aid in the design of anthropomorphic phantoms for proton radiotherapy
نویسندگان
چکیده
The delivery of accurate proton dose for clinical trials requires that the appropriate conversion function from Hounsfield unit (HU) to relative linear stopping power (RLSP) be used in proton treatment planning systems (TPS). One way of verifying that the TPS is calculating the correct dose is an end-to-end test using an anthropomorphic phantom containing tissue equivalent materials and dosimeters. Many of the phantoms in use for such end-to-end tests were originally designed using tissue-equivalent materials that had physical characteristics to match patient tissues when irradiated with megavoltage photon beams. The aim of this study was to measure the RLSP of materials used in the phantoms, as well as alternative materials to enable modifying phantoms for use at proton therapy centers. Samples of materials used and projected for use in the phantoms were measured and compared to the HU assigned by the treatment planning system. A percent difference in RLSP of 5% was used as the cutoff for materials deemed acceptable for use in proton therapy (i.e., proton equivalent). Until proper tissue-substitute materials are identified and incorporated, institutions that conduct end-to-end tests with the phantoms are instructed to override the TPS with the measured stopping powers we provide. To date, the RLSPs of 18 materials have been measured using a water phantom and/or multilayer ion chamber (MLIC). Nine materials were identified as acceptable for use in anthropomorphic phantoms. Some of the failing tissue substitute materials are still used in the current phantoms. Further investigation for additional appropriate tissue substitute materials in proton beams is ongoing. Until all anthropomorphic phantoms are constructed of appropriate materials, a unique HU-RLSP phantom has been developed to be used during site visits to verify the proton facility's treatment planning HU-RLSP calibration curve.
منابع مشابه
Fabrication of anthropomorphic phantoms for use in total body photon irradiation and total skin electron irradiation studies
Introduction: Total Skin Electron Therapy (TSET) and Total Body Irradiation (TBI) are kinds of treatment which use electron and photon beams to treat special types of cancers. The aim of these techniques are to deliver uniform dose to the entire skin while minimizing delivered dose to organs at risk. To check the homogeneity of dose delivery in TBI and TSET, using a humanoid ph...
متن کاملThe Comparison of the shares of stopping power in a soft tissue-equivalent material
Introduction: Proton therapy is a type of radiation treatment that it uses protons to treat cancer. Because of the protons’ unique ability to distribute the radiation dose more directly to the tumor, it minimizes the damage to nearby healthy tissues. The rate of energy loss by the ion in the target is called stopping power. The total stopping power is sum nuclear and electroni...
متن کاملطراحی و امکانسنجی ساخت فانتوم آنتروپومورفیک تمام بدن انسان برای استفاده در بخشهای پرتودرمانی
Due to the increasing proliferation of radiotherapy centers in the country to treat cancer patients and raise the quality of treatment, it is needed to find the human equivalent phantom for dosimetry, calibration and quality control of radiotherapy devices. Generally, they are enumerated into two categories: homogeneous and nonhomogeneous phantoms (anthropomorphic). The main purpose of this stu...
متن کاملDesign of homogeneous and heterogeneous human equivalent thorax phantom for tissue inhomogeneity dose correction using TLD and TPS measurements
Background: The purpose of this study is to fabricate inexpensive in-house low cost homogeneous and heterogeneous human equivalent thorax phantom and assess the dose accuracy of the Treatment Planning Systems (TPS) calculated values for different lung treatment dosimetery. It is compared with Thermoluminescent Dosimeter (TLD) measurement. Materials and Methods: Homogeneous and heterogeneous tho...
متن کاملQuantum mechanical proton range in human body
Introduction: Proton therapy delivers radiation to tumor tissue in a much more confined way than conventional photon therapy thus allowing the radiation oncologist to use a greater dose while still minimizing side. Materials and Methods: protons release most of their energy within the tumor region. As a result, the treating physician can potentially give an...
متن کامل